Advertisement

Immunopathogenesis, Diagnosis, and Treatment of Multiple Sclerosis

A Clinical Update
Published:October 31, 2022DOI:https://doi.org/10.1016/j.ncl.2022.05.004

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribers receive full online access to your subscription and archive of back issues up to and including 2002.

      Content published before 2002 is available via pay-per-view purchase only.

      Subscribe:

      Subscribe to Neurologic Clinics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Thompson A.J.
        • Baranzini S.E.
        • Geurts J.
        • et al.
        Multiple Sclerosis.
        Lancet Neurol. 2018; 391: 1622-1636
        • Brownlee W.J.
        • Hardy T.A.
        • Fazekas F.
        • et al.
        Diagnosis of multiple sclerosis: progress and challenges.
        Lancet. 2017; 389: 1336-1346
        • Gelfand J.M.
        Multiple sclerosis: diagnosis, differential diagnosis, and clinical presentation.
        Handb Clin Neurol. 2014; https://doi.org/10.1016/B978-0-444-52001-2.00011-X
        • Eriksson M.
        • Andersen O.
        • Runmarker B.
        Long-term follow up of patients with clinically isolated syndromes, relapsing-remitting and secondary progressive multiple sclerosis.
        Mult Scler. 2003; 9: 260-274
        • Ciotti J.R.
        • Cross A.H.
        Disease-modifying treatment in progressive multiple sclerosis.
        Curr Treat Options Neurol. 2018; 20: 12
        • Krieger S.C.
        New approaches to the diagnosis, clinical course, and goals of therapy in multiple sclerosis and related disorders.
        Continuum (Minneap Minn). 2016; 22: 723-729
        • Confavreux C.
        • Vukusic S.
        Natural history of multiple sclerosis.
        Brain. 2006; 129: 606-616
        • Lublin F.D.
        • Reingold S.C.
        • Cohen J a
        • et al.
        Defining the clinical course of multiple sclerosis: the 2013 revisions.
        Neurology. 2014; 83: 278-286
        • Wang C.X.
        • Greenberg B.M.
        Pediatric multiple sclerosis.
        Neurol Clin. 2018; 36: 135-149
        • Hintzen R.Q.
        Pediatric acquired CNS demyelinating syndromes.
        Neurology. 2016; 87: s67-s73
        • Wallin M.T.
        • Culpepper W.J.
        • Campbell J.D.
        • et al.
        The prevalence of MS in the United States.
        Neurology. 2019; 92 (LP-e1040): e1029
        • Carroll W.M.
        2017 McDonald MS diagnostic criteria: Evidence-based revisions.
        Mult Scler J. 2018; 24: 92-95
        • Hempel S.
        • Graham G.D.
        • Fu N.
        • et al.
        A systematic review of modifiable risk factors in the progression of multiple sclerosis.
        Mult Scler. 2017; 23: 525-533
        • Freedman M.S.
        • Rush C.A.
        Severe, highly active, or aggressive multiple sclerosis.
        Continuum (Minneap Minn). 2016; 22: 761-784
        • Scott T.F.
        • Schramke C.J.
        Poor recovery after the first two attacks of multiple sclerosis is associated with poor outcome five years later.
        J Neurol Sci. 2010; 292: 52-56
        • Reich D.S.
        • Lucchinetti C.F.
        • Calabresi P.A.
        Multiple Sclerosis.
        N Engl J Med. 2018; 378: 169-180
        • Jacobs B.M.
        • Giovannoni G.
        • Cuzick J.
        • et al.
        Systematic review and meta-analysis of the association between Epstein–Barr virus, multiple sclerosis and other risk factors.
        Mult Scler J. 2020; 26: 1281-1297
        • Bjornevik K.
        • Cortese M.
        • Healy B.C.
        • et al.
        Longitudinal analysis reveals high prevalence of Epstein-Barr virus associated with multiple sclerosis.
        Science. 2022; 375: 296-301
        • Bordon Y.
        Linking Epstein-Barr virus infection to multiple sclerosis.
        Nat Rev Immunol. 2022; 7: 41586
        • Narula S.
        • Banwell B.
        Pediatric demyelination.
        Continuum (Minneap Minn). 2016; 22: 897-915
        • Yamamoto E.
        • Ginsberg M.
        • Rensel M.
        • et al.
        Pediatric-onset multiple sclerosis: a single center study.
        J Child Neurol. 2018; 33: 98-105
        • Rostásy K.
        • Bajer-Kornek B.
        Paediatric multiple sclerosis and other acute demyelinating diseases.
        Curr Opin Neurol. 2018; 31: 244-248
        • Kozhieva M.
        • Naumova N.
        • Alikina T.
        • et al.
        Primary progressive multiple sclerosis in a Russian cohort: relationship with gut bacterial diversity.
        BMC Microbiol. 2019; 19: 309
        • Katz Sand I.
        • Zhu Y.
        • Ntranos A.
        • et al.
        Disease-modifying therapies alter gut microbial composition in MS.
        Neurol Neuroimmunol Neuroinflammation. 2018; 6: e517
        • Amezcua L.
        • Conti D.
        • Liu L.
        • et al.
        Place of birth, age of immigration, and disability in Hispanics with multiple sclerosis.
        Mult Scler Relat Disord. 2015; 4: 25-30
        • Pérez C.A.
        • Salehbeiki A.
        • Zhu L.
        • et al.
        Assessment of Racial/Ethnic Disparities in Volumetric MRI Correlates of Clinical Disability in Multiple Sclerosis: A Preliminary Study.
        J Neuroimaging. 2021; 31: 115-123
        • Mercado V.
        • Dongarwar D.
        • Fisher K.
        • et al.
        Multiple sclerosis in a multi-ethnic population in houston, texas: A retrospective analysis.
        Biomedicines. 2020; 8: 1-11
        • Amezcua L.
        • Oksenberg J.R.
        • McCauley J.L.
        MS in self-identified Hispanic/Latino individuals living in the US.
        Mult Scler J. 2017; 3 (205521731772510)
        • Amezcua L.
        • Lund B.T.
        • Weiner L.P.
        • et al.
        Multiple sclerosis in Hispanics: A study of clinical disease expression.
        Mult Scler J. 2011; 17: 1010-1016
        • Hillert J.
        Socioeconomic status and multiple sclerosis outcome.
        Nat Rev Neurol. 2020; https://doi.org/10.1038/s41582-020-0329-3
        • Pérez C.A.
        • Lincoln J.A.
        Racial and ethnic disparities in treatment response and tolerability in multiple sclerosis: A comparative study.
        Mult Scler Relat Disord. 2021; 56: 103248
        • Nakamura Y.
        • Gaetano L.
        • Matsushita T.
        • et al.
        A comparison of brain magnetic resonance imaging lesions in multiple sclerosis by race with reference to disability progression.
        J Neuroinflammation. 2018; 15https://doi.org/10.1186/s12974-018-1295-1
        • Amezcua L.
        • Smith J.B.
        • Gonzales E.G.
        • et al.
        Race, ethnicity, and cognition in persons newly diagnosed with multiple sclerosis.
        Neurology. 2020; 94: 1-9
        • Amezcua L.
        • McCauley J.L.
        Race and ethnicity on MS presentation and disease course.
        Mult Scler J. 2020; : 1-7
        • Song X.
        • Li D.
        • Qiu Z.
        • et al.
        Correlation between EDSS scores and cervical spinal cord atrophy at 3T MRI in multiple sclerosis: A systematic review and meta-analysis.
        Mult Scler Relat Disord. 2019; https://doi.org/10.1016/j.msard.2019.101426
        • Avasarala J.
        Inadequacy of Clinical Trial Designs and Data to Control for the Confounding Impact of Race/Ethnicity in Response to Treatment in Multiple Sclerosis.
        JAMA Neurol. 2014; 71: 943-944
        • Schwid S.R.
        • Panitch H.S.
        Full results of the Evidence of Interferon Dose-Response-European North American Comparative Efficacy (EVIDENCE) study: a multicenter, randomized, assessor-blinded comparison of low-dose weekly versus high-dose, high-frequency interferon beta-1a for rela.
        Clin Ther. 2007; 29: 2031-2048
        • Kappos L.
        • Edan G.
        • Freedman M.S.
        • et al.
        The 11-year long-term follow-up study from the randomized BENEFIT CIS trial.
        Neurology. 2016; 87: 978-987
        • Barkhof F.
        • de Jong R.
        • Sfikas N.
        • et al.
        The influence of patient demographics, disease characteristics and treatment on brain volume loss in Trial Assessing Injectable Interferon vs FTY720 Oral in Relapsing-Remitting Multiple Sclerosis (TRANSFORMS), a phase 3 study of fingolimod in multiple sc.
        Mult Scler. 2014; 20: 1704-1713
        • O’Connor P.
        • Comi G.
        • Freedman M.S.
        • et al.
        Long-term safety and efficacy of teriflunomide: Nine-year follow-up of the randomized TEMSO study.
        Neurology. 2016; 86: 920-930
        • Koch M.
        • Kingwell E.
        • Rieckmann P.
        The natural history of primary progressive multiple sclerosis.
        Neurology. 2009; 73: 1996-2002
        • Miller D.H.
        • Chard D.T.
        • Ciccarelli O.
        Clinically isolated syndromes.
        Lancet Neurol. 2012; 11: 157-169
        • van der Vuurst de Vries R.M.
        • Mescheriakova J.Y.
        • Wong Y.Y.M.
        • et al.
        Application of the 2017 Revised McDonald Criteria for Multiple Sclerosis to Patients With a Typical Clinically Isolated Syndrome.
        JAMA Neurol. 2018; 75: 1392-1398
        • Hou Y.
        • Jia Y.
        • Hou J.
        Natural Course of Clinically Isolated Syndrome: A Longitudinal Analysis Using a Markov Model.
        Sci Rep. 2018; 8: 10857
        • McDonald W.I.
        • Compston A.
        • Edan G.
        • et al.
        Recommended diagnostic criteria for multiple sclerosis: guidelines from the International Panel on the diagnosis of multiple sclerosis.
        Ann Neurol. 2001; 50: 121-127
        • Tillery E.E.
        • Clements J.N.
        • Howard Z.
        What’s new in multiple sclerosis?.
        Ment Heal Clin. 2017; 7: 213-220
        • Thompson A.J.
        • Banwell B.L.
        • Barkhof F.
        • et al.
        Diagnosis of multiple sclerosis: 2017 revisions of the McDonald criteria.
        Lancet Neurol. 2018; 17: 162-173
        • Olek M.J.
        Differential diagnosis, clinical features, and prognosis of multiple sclerosis. In: Current clinical neurology: multiple sclerosis. Humana Press Inc, Totowa, NJ2005: 15-53
        • Miller D.H.
        • Leary S.M.
        Primary-progressive multiple sclerosis.
        Lancet Neurol. 2007; 6: 903-912
        • Vollmer T.L.
        • Nair K.V.
        • Williams I.M.
        • et al.
        Multiple Sclerosis Phenotypes as a Continuum.
        Neurol Clin Pract. 2021; 11: 342-351
        • De Stefano N.
        • Giorgio A.
        • Tintoré M.
        • et al.
        Radiologically isolated syndrome or subclinical multiple sclerosis: MAGNIMS consensus recommendations.
        Mult Scler J. 2018; 23: 214-221
        • Lebrun C.
        Radiologically isolated syndrome should be treated with disease-modifying therapy – commentary.
        Mult Scler J. 2017; 23: 1821-1823
        • Okuda D.T.
        • Siva A.
        • Kantarci O.
        • et al.
        Radiologically isolated syndrome: 5-year risk for an initial clinical event.
        PLoS One. 2014; 9https://doi.org/10.1371/journal.pone.0090509
        • Matute-Blanch C.
        • Villar L.M.
        • Álvarez-Cermeño J.C.
        • et al.
        Neurofilament light chain and oligoclonal bands are prognostic biomarkers in radiologically isolated syndrome.
        Brain. 2018; 141: 1085-1093
        • Yamout B.
        • Al Khawajah M.
        Radiologically isolated syndrome and multiple sclerosis.
        Mult Scler Relat Disord. 2017; 17: 234-237
        • Filippi M.
        • Preziosa P.
        • Meani A.
        • et al.
        Prediction of a multiple sclerosis diagnosis in patients with clinically isolated syndrome using the 2016 MAGNIMS and 2010 McDonald criteria: a retrospective study.
        Lancet Neurol. 2018; 17: 133-142
        • Palace J.
        Making the diagnosis of multiple sclerosis.
        J Neurol Neurosurg Psychiatry. 2001; 71 (ii3–ii8)
        • McMahon K.L.
        • Cowin G.
        • Galloway G.
        Magnetic resonance imaging: The underlying principles.
        J Orthop Sports Phys Ther. 2011; 41: 806-819
        • Ge Y.
        Multiple sclerosis: the role of MR imaging.
        AJNR Am J Neuroradiol. 2006; 27: 1165-1176
        • Wingerchuk D.M.
        Immune-mediated myelopathies.
        Continuum (Minneap Minn). 2018; 24: 497-522
        • Wildner P.
        • Stasiołek M.
        • Matysiak M.
        Differential diagnosis of multiple sclerosis and other inflammatory CNS diseases.
        Mult Scler Relat Disord. 2020; 37: 101452
        • Schäffler N.
        • Köpke S.
        • Winkler L.
        • et al.
        Accuracy of diagnostic tests in multiple sclerosis - a systematic review.
        Acta Neurol Scand. 2011; 124: 151-164
        • Weinshenker B.G.
        • Wingerchuk D.M.
        Neuromyelitis Spectrum Disorders.
        Mayo Clin Proc. 2017; 92: 663-679
        • Shukla N.M.
        • Lotze T.E.
        • Muscal E.
        Inflammatory Diseases of the Central Nervous System.
        Neurol Clin. 2021; 39: 811-828
        • Dixon G.A.
        • Pérez C.A.
        Multiple sclerosis and the choroid plexus: emerging concepts of disease immunopathophysiology.
        Pediatr Neurol. 2019; https://doi.org/10.1016/j.pediatrneurol.2019.08.007
        • Lucchinetti C.F.
        • Guo Y.
        • Popescu B.F.G.
        • et al.
        The pathology of an autoimmune astrocytopathy: lessons learned from neuromyelitis optica.
        Brain Pathol. 2014; 24: 83-97
        • Borisow N.
        • Mori M.
        • Kuwabara S.
        • et al.
        Diagnosis and Treatment of NMO Spectrum Disorder and MOG-Encephalomyelitis.
        Front Neurol. 2018; 9https://doi.org/10.3389/fneur.2018.00888
        • Lana-Peixoto M.A.
        • Talim N.
        Neuromyelitis optica spectrum disorder and anti-MOG syndromes.
        Biomedicines. 2019; 7: 1-24
        • Wynford-Thomas R.
        • Jacob A.
        • Tomassini V.
        Neurological update: MOG antibody disease.
        J Neurol. 2019; 266: 1280-1286
        • Zhou L.
        • Huang Y.
        • Li H.
        • et al.
        MOG-antibody associated demyelinating disease of the CNS: A clinical and pathological study in Chinese Han patients.
        J Neuroimmunol. 2017; https://doi.org/10.1016/j.jneuroim.2017.01.007
        • Shor N.
        • Deschamps R.
        • Cobo Calvo A.
        • et al.
        MRI characteristics of MOG-Ab associated disease in adults: An update.
        Rev Neurol (Paris). 2021; 177: 39-50
        • Menge T.
        • Hemmer B.
        • Nessler S.
        • et al.
        Acute Disseminated Encephalomyelitis: An Update.
        Arch Neurol. 2005; 62: 1673-1680
        • Tenembaum S.
        • Chamoles N.
        • Fejerman N.
        Acute disseminated encephalomyelitis: A long-term follow-up study of 84 pediatric patients.
        Neurology. 2002; 59: 1224-1231
        • Weinshenker B.G.
        • O’Brien P.C.
        • Petterson T.M.
        • et al.
        A randomized trial of plasma exchange in acute central nervous system inflammatory demyelinating disease.
        Ann Neurol. 1999; 46: 878-886
        • Harding K.
        • Williams O.
        • Willis M.
        • et al.
        Clinical outcomes of escalation vs early intensive disease-modifying therapy in patients with multiple sclerosis.
        JAMA Neurol. 2019; 76: 536-541
        • Group T.I.M.S.S.
        Interferon beta-1b is effective in relapsing-remitting multiple sclerosis.
        Neurology. 1993; 43 (LP – 655)
        • Cross A.H.
        • Naismith R.T.
        Established and novel disease-modifying treatments in multiple sclerosis.
        J Intern Med. 2014; 275: 350-363
        • Zhang J.
        • Hutton G.
        • Zang Y.
        A comparison of the mechanisms of action of interferon beta and glatiramer acetate in the treatment of multiple sclerosis.
        Clin Ther. 2002; 24: 1998-2021
        • Kappos L.
        • Freedman M.S.
        • Polman C.H.
        • et al.
        Long-term effect of early treatment with interferon beta-1b after a first clinical event suggestive of multiple sclerosis: 5-year active treatment extension of the phase 3 BENEFIT trial.
        Lancet Neurol. 2009; 8: 987-997
        • La Mantia L.
        • Di Pietrantonj C.
        • Rovaris M.
        • et al.
        Interferons-beta versus glatiramer acetate for relapsing-remitting multiple sclerosis.
        Cochrane Database Syst Rev. 2016; https://doi.org/10.1002/14651858.CD009333.pub3
        • Schrempf W.
        • Ziemssen T.
        Glatiramer acetate: mechanisms of action in multiple sclerosis.
        Autoimmun Rev. 2007; 6: 469-475
        • Rae-Grant A.
        • Day G.S.
        • Marrie R.A.
        • et al.
        Practice guideline recommendations summary: Disease-modifying therapies for adults with multiple sclerosis.
        Neurology. 2018; 90: 777-788
        • Liu Z.
        • Liao Q.
        • Wen H.
        • et al.
        Disease modifying therapies in relapsing-remitting multiple sclerosis: A systematic review and network meta-analysis.
        Autoimmun Rev. 2021; 20: 102826
        • Cotchett K.R.
        • Dittel B.N.
        • Obeidat A.Z.
        Comparison of the Efficacy and Safety of Anti-CD20 B Cells Depleting Drugs in Multiple Sclerosis.
        Mult Scler Relat Disord. 2021; 49https://doi.org/10.1016/j.msard.2021.102787
        • Eriksson I.
        • Komen J.
        • Piehl F.
        • et al.
        The changing multiple sclerosis treatment landscape: impact of new drugs and treatment recommendations.
        Eur J Clin Pharmacol. 2018; 74: 663-670
        • Wingerchuk D.M.
        • Carter J.L.
        Multiple sclerosis: current and emerging disease-modifying therapies and treatment strategies.
        Mayo Clin Proc. 2014; 89: 225-240
        • Naismith R.T.
        • Wundes A.
        • Ziemssen T.
        • et al.
        Diroximel Fumarate Demonstrates an Improved Gastrointestinal Tolerability Profile Compared with Dimethyl Fumarate in Patients with Relapsing–Remitting Multiple Sclerosis: Results from the Randomized, Double-Blind, Phase III EVOLVE-MS-2 Study.
        CNS Drugs. 2020; 34: 185-196
        • Singer B.A.
        Initiating oral fingolimod treatment in patients with multiple sclerosis.
        Ther Adv Neurol Disord. 2013; 6: 269-275
        • Leist T.P.
        • Weissert R.
        Cladribine: Mode of Action and Implications for Treatment of Multiple Sclerosis.
        Clin Neuropharmacol. 2011; 34 (Available at:): 28-35
        • Neema M.
        • Stankiewicz J.
        • Arora A.
        • et al.
        MRI in multiple sclerosis: what’s inside the toolbox?.
        Neurotherapeutics. 2007; 4: 602-617
        • Feinstein A.
        • Freeman J.
        • Lo A.C.
        Treatment of progressive multiple sclerosis: what works, what does not, and what is needed.
        Lancet Neurol. 2015; 14: 194-207
        • Rocca M.A.
        • Messina R.
        • Filippi M.
        Multiple sclerosis imaging: recent advances.
        J Neurol. 2013; 260: 929-935
        • Montalban X.
        • Hauser S.L.
        • Kappos L.
        • et al.
        Ocrelizumab versus Placebo in Primary Progressive Multiple Sclerosis.
        N Engl J Med. 2016; 376: 209-220
        • Coles A.J.
        • Cox A.
        • Le Page E.
        • et al.
        The window of therapeutic opportunity in multiple sclerosis: evidence from monoclonal antibody therapy.
        J Neurol. 2006; 253: 98-108
        • Leray E.
        • Yaouanq J.
        • Le Page E.
        • et al.
        Evidence for a two-stage disability progression in multiple sclerosis.
        Brain. 2010; 133: 1900-1913
        • Ontaneda D.
        • Tallantyre E.
        • Kalincik T.
        • et al.
        Early highly effective versus escalation treatment approaches in relapsing multiple sclerosis.
        Lancet Neurol. 2019; 18: 973-980
        • Grand’Maison F.
        • Yeung M.
        • Morrow S.A.
        • et al.
        Sequencing of disease-modifying therapies for relapsing–remitting multiple sclerosis: a theoretical approach to optimizing treatment.
        Curr Med Res Opin. 2018; 34: 1419-1430
        • Filippi M.
        • Rocca M.A.
        Rethinking multiple sclerosis treatment strategies.
        Lancet Neurol. 2020; 19: 281-282
        • Willis M.A.
        • Fox R.J.
        Progressive multiple sclerosis.
        Continuum (Minneap Minn). 2016; 22: 785-798
        • Kappos L.
        • Bar-Or A.
        • Cree B.A.C.
        • et al.
        Siponimod versus placebo in secondary progressive multiple sclerosis (EXPAND): a double-blind, randomised, phase 3 study.
        Lancet. 2018; 391: 1263-1273
        • Vermersch P.
        • Brieva-Ruiz L.
        • Fox R.J.
        • et al.
        Efficacy and Safety of Masitinib in Progressive Forms of Multiple Sclerosis.
        Neurol Neuroimmunol Neuroinflammation. 2022; 9: e1148
        • Correale J.
        BTK inhibitors as potential therapies for multiple sclerosis.
        Lancet Neurol. 2021; 20: 689-691
        • Podbielska M.
        • Banik N.L.
        • Kurowska E.
        • et al.
        Myelin recovery in multiple sclerosis: the challenge of remyelination.
        Brain Sci. 2013; 3: 1282-1324
        • Cree B.A.C.
        • Cutter G.
        • Wolinsky J.S.
        • et al.
        Safety and efficacy of MD1003 (high-dose biotin) in patients with progressive multiple sclerosis (SPI2): a randomised, double-blind, placebo-controlled, phase 3 trial.
        Lancet Neurol. 2020; 19: 988-997
        • Sedel F.
        • Papeix C.
        • Bellanger A.
        • et al.
        High doses of biotin in chronic progressive multiple sclerosis: A pilot study.
        Mult Scler Relat Disord. 2015; 4: 159-169
        • Green A.J.
        • Gelfand J.M.
        • Cree B.A.
        • et al.
        Clemastine fumarate as a remyelinating therapy for multiple sclerosis (ReBUILD): a randomised, controlled, double-blind, crossover trial.
        Lancet. 2017; 390: 2481-2489
        • Cohen J.A.
        • Baldassari L.E.
        • Atkins H.L.
        • et al.
        Autologous Hematopoietic Cell Transplantation for Treatment-Refractory Relapsing Multiple Sclerosis: Position Statement from the American Society for Blood and Marrow Transplantation.
        Biol Blood Marrow Transplant. 2019; 25: 845-854
        • Mansoor S.R.
        • Zabihi E.
        • Ghasemi-Kasman M.
        The potential use of mesenchymal stem cells for the treatment of multiple sclerosis.
        Life Sci. 2019; 235: 116830
        • Cohen J.A.
        • Imrey P.B.
        • Planchon S.M.
        • et al.
        Pilot trial of intravenous autologous culture-expanded mesenchymal stem cell transplantation in multiple sclerosis.
        Mult Scler. 2018; 24: 501-511
        • Cuascut F.X.
        • Hutton G.J.
        Stem Cell-Based Therapies for Multiple Sclerosis: Current Perspectives.
        Biomedicines. 2019; 7: 26
        • Rawji K.S.
        • Gonzalez Martinez G.A.
        • Sharma A.
        • et al.
        The Role of Astrocytes in Remyelination.
        Trends Neurosci. 2020; 43: 596-607
        • Traiffort E.
        • Kassoussi A.
        • Zahaf A.
        • et al.
        Astrocytes and Microglia as Major Players of Myelin Production in Normal and Pathological Conditions.
        Front Cell Neurosci. 2020; 14https://doi.org/10.3389/fncel.2020.00079
        • Nath N.
        • Khan M.
        • Paintlia M.K.
        • et al.
        Metformin attenuated the autoimmune disease of the central nervous system in animal models of multiple sclerosis.
        J Immunol. 2009; 182: 8005-8014